Sample:
\[x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\]
1. \(\theta = \left({{X_\theta - X_L}\over {X_H - X_L}}\right) \times {100}\; °\textrm{C} \)
2. \(a = -{\omega^2}x\)
3. \(y = a \textrm{ } sin{(\omega}t)\)
4. \(T = 2{\pi} \sqrt{l \over g}\)
5. \(T = 2{\pi} \sqrt{m \over k}\)
6. \(v = f \lambda \)
7. \(f_b = \vert f_1 - f_2 \vert \)
8. \(v = \sqrt{T \over m}\)
9. \(f_\circ = \frac{1}{2l} \sqrt{T \over m}\)
10. \(v = \sqrt {\frac {E}{\rho}}\)
11. \(v = \sqrt {\frac {\gamma P}{\rho}}\)
12. \(v = \sqrt {\frac {\gamma RT}{M}}\)
13. \(d = t \, \left (1 - \frac {1}{n} \right ) \)
14. \(n = \frac {1}{\sin {c}}\)
13. \(\theta = {{X_\theta - X_L}\over {X_H - X_L}}(\theta_H - \theta_L) + \theta_L \)
14. \(\theta = {{X_\theta - X_L}\over {X_H - X_L}} \times {100}\; °\textrm{C} \)
15. \(T = \frac {X_T}{X_{tr}} \times \textrm {273.16} \)
16. \(T = \theta + \textrm {273.15} \)
17. \(\gamma _{real} = \gamma _{apparent} + \textrm{3} \alpha \)
18. \(pV = nRT \)
19. \(pV = \frac {1}{3} Nm \overline {c^2} \)
20. \(\Delta Q = \Delta U + \Delta W \)
21. \(V = - \frac {Gm}{r} \)
22. \(V = \frac {1}{4\pi\epsilon} \frac {Q}{r} \)
23. \(C = \frac {k \epsilon_\circ A}{d} \)
24. \(I = \frac {Q}{t} \)
25. \(R = \frac {\rho l}{A} \)
26. \(W = QV \)
27. \(W = VIt \)
28 \(P = VI \)
29. \(P = I^2 R \)
30. \(P = \frac {V^2}{R} \)
31. \(W = I^2 R t \)
32. \(W = \frac {V^2 t}{R} \)
33. \(V = E - Ir \)
34. \( F = A \eta \, (v_1 - v_2) / d \)
35. \(F = ma \)
36. \( \)
37. \( \)
38. \( \)
39. \( \)
40. \( \)
\(W = QV \textrm{ } W = QV \)
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}
\[x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\]
1. \(\theta = \left({{X_\theta - X_L}\over {X_H - X_L}}\right) \times {100}\; °\textrm{C} \)
2. \(a = -{\omega^2}x\)
3. \(y = a \textrm{ } sin{(\omega}t)\)
4. \(T = 2{\pi} \sqrt{l \over g}\)
5. \(T = 2{\pi} \sqrt{m \over k}\)
6. \(v = f \lambda \)
7. \(f_b = \vert f_1 - f_2 \vert \)
8. \(v = \sqrt{T \over m}\)
9. \(f_\circ = \frac{1}{2l} \sqrt{T \over m}\)
10. \(v = \sqrt {\frac {E}{\rho}}\)
11. \(v = \sqrt {\frac {\gamma P}{\rho}}\)
12. \(v = \sqrt {\frac {\gamma RT}{M}}\)
13. \(d = t \, \left (1 - \frac {1}{n} \right ) \)
14. \(n = \frac {1}{\sin {c}}\)
13. \(\theta = {{X_\theta - X_L}\over {X_H - X_L}}(\theta_H - \theta_L) + \theta_L \)
14. \(\theta = {{X_\theta - X_L}\over {X_H - X_L}} \times {100}\; °\textrm{C} \)
15. \(T = \frac {X_T}{X_{tr}} \times \textrm {273.16} \)
16. \(T = \theta + \textrm {273.15} \)
17. \(\gamma _{real} = \gamma _{apparent} + \textrm{3} \alpha \)
18. \(pV = nRT \)
19. \(pV = \frac {1}{3} Nm \overline {c^2} \)
20. \(\Delta Q = \Delta U + \Delta W \)
21. \(V = - \frac {Gm}{r} \)
22. \(V = \frac {1}{4\pi\epsilon} \frac {Q}{r} \)
23. \(C = \frac {k \epsilon_\circ A}{d} \)
24. \(I = \frac {Q}{t} \)
25. \(R = \frac {\rho l}{A} \)
26. \(W = QV \)
27. \(W = VIt \)
28 \(P = VI \)
29. \(P = I^2 R \)
30. \(P = \frac {V^2}{R} \)
31. \(W = I^2 R t \)
32. \(W = \frac {V^2 t}{R} \)
33. \(V = E - Ir \)
34. \( F = A \eta \, (v_1 - v_2) / d \)
35. \(F = ma \)
36. \( \)
37. \( \)
38. \( \)
39. \( \)
40. \( \)
\(W = QV \textrm{ } W = QV \)
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}